<u>Annexure – I</u>

STRUCTURAL DESIGN BASIS REPORT

PROJECT : PROPOSED DEVELOPMENT OF HIGHRISE BUILDINGS AT AHMEDABAD, GUJARAT.

<u>CLEINT</u> : <u>JEWEL RESIDENCY (BLOCK-A)</u>

ARCHITECT: PANDYA ASSOCIATES.

STRUCTURAL CONSULTANTS: SETU INFRASTRUCTURE

1. INTRODUCTION

The proposed Building consists of 3 Basement + 1 Ground floor +19 stories and Overhead water two water tanks with 25000 lit as per AMC Submission plan however As consideration of future expansion & with consideration to Use of Extra chargeable FSI & or TDR bases development plan we have structurally design this building for 3 Basement + 1 Ground floor +20 stories and Overhead water two water tanks with 25000 lit.

Brick bat coba waterproofing on terrace including floor finish (150mm thk) is considered as $0.15x20 \text{ kN/m}^3 = 3.0 \text{ kN/m}^2$. (As In Tabulated)

2. DESIGN LOADS

a) Dead Loads

The self-weight of the various elements are computed based on size and density of Materials as given below:-

Density of Reinforced Cement Concrete	$=25 \text{ kN/m}^3$
Density of Plain Cement Concrete	$= 24 \text{ kN/m}^3$
Density of Steel	$= 78.5 \text{ kN/m}^3$

Density of Soil	$= 18 \text{ kN/m}^3$
Density of Brick with plaster	$= 20 \text{ kN/m}^3$
Floor finish	= 1.5kN/m ²
SiporexWall : Density :	$=8.0 \text{ kN/m}^3$

b) Floor Loads

Floor	SIDL Siporex	LL	FF including	Remarks
	Wall load	Kn/m ²	Screed + Ducting	
	Kn/m ²		Kn/m ²	
First Basement	Nil	3	1.5	
Second Basement	Nil	3	1.5	
Third Basement	Nil	6	1.5	
GF	2.5	3	1.5	Shops 3.0kn/m ² ,
				Access Road
				outside building
				design for (Fire
				Engine) 50 tn or
				15kn/m ²
TypFlr (1 st to 20	2	2	1.5	Stair case foyer –
stories floor)				3kn/m ²
RF		1.5	3	

c) Loads as per IS 875(part 2) -1987

Area	Live Load (KN/m2)	Floor Finish including	Siporex Wall Load
		Screed + ducting	Kn/m ²
		(KN/m ²)	
Show Room detail	3.0	1.5	2.5
Toilets & Bath Rooms	2.0	3 (if Sunk)/1.5	2
		without sunk	
Staircase,	3.0	1	Nil
Corridors,Ramp,Fire			
escape			
Fire Engine (outside	15.0kn/m^2	1.5	Nil
building			
at GF)			

FOS against uplift due to ground water table considered 1.0

d) Wind Load

The wind pressure has been calculated based on the data furnished below and other provision laid in IS875 (Part-3) - 1987.

Basic Wind Speed (pg53)		Vb	=	39 m/sec
Risk Coefficient Factor (pg 1	1)	K1	=	1.0
Terrain Category (Pg 8)			=	3
Structure Class (pg 11)			=	C (Ht More than 50m)
Terrain, Height &				
Structure Size Factor	K2		=	1
Topography Factor	K3		=	1

e) Earthquake Load

The loading due to earthquake is assessed based on the provisions of IS: 1893 (Part-1):2002

Seismic Zone (pg 36) = IIITable-2 Zone factor (Z) = 0.16. Table-6 Importance Factor (I) = 1 Response Reduction Factor (R) Table-7 = 5 As per geotechnical report and in accordance with Cl. Soil type No. 6.4.5 IS 1893-2002 Height of building (h) =3B+GF+20Storey= (4.7+3.4+3.4) + (3.5) + (3.2x20)= 84.2 Approx.

Fundamental Natural Time Period (Ts) with brick infill walls

Block A X- dir. T=0.09xh \sqrt{d} = 0.09x83.2 $\sqrt{46.20}$ = 1.11 SecY - dir. T=0.09xh \sqrt{d} = 0.09x83.2 $\sqrt{18.1}$ = 1.78 Sec

Horizontal seismic coefficient

 $Ah = \underline{Z \times I \times Sa} \\ 2 \times Rx g$

3. CHECK FOR LATERAL SWAY AS PER IS Codes

The allowable lateral sway at top should not exceed H/500(For wind Forces).Stories Drift shall not exceed 0.004 i.e (1/250) H(For Seismic forces).Where, H is total height of Building.

4. BASIC LOADS AND LOAD COMBINATIONS

The various loads are combined in accordance with the stipulations in IS:875 (Part5) 1987. Wherever imposed load is combined with earthquake load the appropriate part of the imposed load as specified in IS:1893-2002 is adopted both for evaluating earthquake effect and for combined load effects, used in such combination.

BASIC LOAD CASES

Load case	Mark	Description
1	EQX	SEISMIC LOAD IN X DIR.
2	EQY	SEISMIC LOAD IN Y DIR.
3	DL+FF	FLOOR SLAB & FINISH LOAD
4	WL	WALL LOAD
5	LIVE1	LIVE LOAD = $<3 \text{ kN/m}^2$
6	LIVE2	LIVE LOAD > 3 kN/m^2

5. LOAD FACTORS FOR DESIGN

Description of Load Combination	Load Factor for Primary Load Cases			
Description of Loud Combination	Dead Load	Live Load	Wind Load	Seismic Load
Dead load + Live load	1.5	1.5	0.0	0.0
Dead load + Wind load	1.5	0	1.5	0.0
Dead load Seismic load	1.5	0	0	1.5
Dead load+Liveload+Wind load	1.2	1.2	1.2	0.0
Dead load+Liveload+Seismic load	1.2	1.2	0	1.2
Dead + Seismic	0.9	0	0	1.5
Dead load+Wind load	0.9	0	1.5	0

6. ANALYSIS METHOD

Basic modeling has been generated in our customized Programme along with all primary loadings and the same is exported in ETABS-2015 for analysis. The output of analysis is modified again by customized interface package for in-house design module.

The structure will be analyzed for Static and Dynamic and Lateral loads due to Earthquake/Wind loads and its combinations in ETABS Software.

7. <u>DESIGN METHODOLOGY</u>

All structures have been designed according to the Limit State Method as specified in IS:456-2000. Appropriate loads and its combinations, as per relevant clauses in Code IS 456:2000 Code IS 875 (Part-5) 1987, for the most unfavorable effects are chosen for design.

8. CONSTRUCTION DETAILS

1. Open Foundation	-	Concrete Mix M:25 & Steel Fe 415
2. Columns/Shear wall	-	Concrete Mix M:30 M: 35 M: 40 & Steel Fe 415
3. Beams & Slabs	-	Concrete Mix M:20 M: 25& Steel Fe 415
4. R.C. Retaining Wall	-	Concrete Mix M:20M: 25& Steel Fe 415
5. External Wall	-	150 thk Siporex block wall
		as per architectural layout.
6. Internal Wall	-	100 thk Siporex block wall
		as per architectural layout.
7. Typical Floor Height	-	As per Arch Drawing

9. <u>CONCRETE</u>

All the concrete items for the construction have the following characteristics

Grade of Concrete	= M:25, M30, M:35, M:40
	(Concrete design Mix as per IS 456-2000)
	M15 (For P.C.C.)
Aggregate	= 20mm and down size, mechanically crushed
	Aggregate

10. <u>REINFORCEMENT</u>

Steel reinforcement shall be of Grade Fe500.

11. EXPOSURE CONDITION

Structural elements below Plinth level and External column and beam are designed for Moderate exposure condition and internal column, floor beams and slabs are designed for mild exposure condition as per Table 16 of IS 456-2000.

12. COVER TO REINFORCEMENT

The nominal cover to main reinforcement shall be as follows.

	Cove	r	Fire resistance (Hours)	
Staircase waist slab	=	35mm	2	
Slab	=	25mm	1.5	
Columns	=	40mm	2	
Floor Beams	=	30mm	2	
Retaining Wall	=	40mm	2	

13. FOUNDATION SYSTEM

The buildings have been supported on columns with shear wall with raft foundation as per recommendation in SIR.

Safe allowable bearing capacity is considered as per soil investigation report.

14. <u>CODES & STANDARDS</u>

All the designs are conforming to the relevant Indian Standards. Some of the relevant Indian Standard Codes, which have been followed for the structural designs, are given below.

Code	Description
IS:875 (Part-1)-1987	Code of Practice for Design Loads (Other
	than Earthquake) for Building and
	Structures-Unit Weights of Buildings
	Materials and Stored Material.
IS:875 (Part-2)-1987	Code of Practice for Design Loads (Other
	than Earthquake) for Building and
	Structures-Imposed loads

IS:875 (Part-3)-1987	Code of Practice for Design Loads (Other
	than Earthquake) for Buildings and
	Structures – Wind Load.
IS:875 (Part-5)-1987	Code of Practice for Design Loads (Other
	than Earthquake) for Buildings and
	Structures – Special Loads and Load
	Combinations
IS:456 2000	Code of Practice for Plain and Reinforced
	ConcreteIS:1893 (Part-1)-2002 Indian
	Standard Criteria for Earthquake Resistant
	Design of Structures
IS:13920-1993	Ductile Detailing of reinforced concrete
	structures subjected to seismic forces -
	code of practice.
IS:1904	Indian Standard Code of practice for
	Design & Construction foundations in Soil:
	General Requirements.
IS:1642-1989	Indian Standard Code of practice for Fire
	Safety Of Buildings (General) : Details Of
	Construction.

APPENDIX – II

DESCRIPTION OF SUB-STRUCTURE

No. of basements		3
Minimum clearance between		2.66 m
outermost basement retaining		
wall and compound wall		
Has a Shoring system been		NO
installed? Submit sectional detail		
of the shoring system		
Give details of methodology used	Bottom Level of Raft w.r.t.	15.0 m
to resist uplift pressure due to	ground level in mts.	
ground water for tower portion as	Tetal decorrected load of calf	
well as the portion outside the	1 otal downward load of self-	
tower.	over reft + Pock Anchors if any	
	(for raft spanning between	
	columns)	
	Whether pressure release pipes	
	have been used?	
	Water level assumed for uplift	
	calculation	
Description of the foundation for		
the tower block		
Nature of Foundation	Piles, Spread Footings,	Combined Raft ,Spread Footing
SPC accumed T/sq mt	Combined Kart, Filed Kart, etc.	$24 \text{ T}/m^2$
SBC assumed 1/sq.mt.		31 1/11
Sub-grade Elastic Modulus		6000 Kn/m ²
Plooring system of the	VDF or IPS	
Dataining well types & Sequence	Whather Droposed cantilever	Bronosod Cantilever
of backfilling	Cantilever Supported between	Proposed Cantilever
of backfining	Buttresses/Counter forts, etc.	
Intended Use of basements		Parking
If rock anchors are used, are they		Not Applicable
grouted after installation and		
stressing?		
Is structural steel used in the		NO
construction of the sub-structure?		
If yes. What are the measures		Not Applicable
taken for its fire proofing and		
corrosion resistance?		

Whether Expansion/Separation joints provided?	NO
Whether expansion joint/separation joint continues through basement?	
If yes, detail at Basement level & retaining wall junction	

APPENDIX – III

DESCRIPTION OF SUPER STRUCTURE

No. of Floors & height of building in mt	$\{[3^{rd} B + 2^{nd} B + 1^{st} B] +$
The of Thoms & height of building in file.	[Plinth + $GF + FF$] +
	$[2^{nd} \text{ to } 15^{th} \text{ floor}] +$
	$[16^{\text{th}} \text{ to } 19^{\text{th}} \text{ floor}] +$
	[20 th Floor]+
	[SC + LMR + OHWT + Air Antenna]
	= Total Height
	$\{[4.650 \text{ mt} + 3.45 \text{ mt} + 4.05 \text{ mt}] + [0.45 \text{ mt} + 50 \text{ mt} + 2.45 \text{ mt}] \}$
	[0.45 mt + 4.50 mt + 3.45 mt] +
	[44.01 mt (3.15 mt x 14 floor)] + [13.80 mt (3.45 mt x 4 floor]
	[3.45 m] +
	[8.41 mt]}
	= 90.00 mt
Shape of Building, Plan, Elevation, whether	Rectangular
Symmetric in Elevation	
Maximum plan dimension in either direction in mt.	46.2 m
Ratio of plan dimension	2.55
Typical floor to floor height in mt.	3.2 m
Maximum floor to floor height in entire height of	4.7 m
building in mt	
Aspect ratio	80 5/18 1 = 4 44
(Height of Building till Terroce / Minimum	00.5/10.1 - 1.11
Dimension of Building)	
True of floor clob	One Wey, True Wey
A service of the service of the service servic	150 may
Average thickness of floor slab in mm.	150 mm
Whether column are RCC, Composite or in	RCC
structural steel	
Lateral System	Ductile Shear Wall with SMRF
Whether the Geometry of Building is Symmetric	Yes
Whether the lateral load resisting system is	Yes
symmetrically placed in Geometry	
Use of floor at different levels (Residential /	3 rd Basement floor and G E used for Commercial
Commercial / industrial)	1^{st} to 10^{th} floor used for Residential
Use of floor at different levels (Besident /	Pasident / Commercial
Commercial / industrial)	
	NO
Is there any Transfer level?	NU
If yes, depth of Transfer Girder	
Whether expansion joint is provided?	Not Require
If yes, what is the maximum plan dimension in mt.	
Whether separation gap at the joint is sufficiently	Not Require

provided?	
Maximum cantilever projection in mt.	2 m

- 3) Provide brief Description of Structural System with sketches, images of dwg. etc. with specific focus on _Lateral load resisting system.
 - > Shear wall provide for lateral resisting system.

4) Provide brief note on modeling, software used etc. Clearly mention whether infill / partition wall is idealized as part of lateral load system?

- ▶ Model has been generated in ETABS-2015 by the architectural grid.
- > Material properties, section properties and loading parameters input in ETABS.
- ➤ For Earthquake load Time period input as per IS 1893-2002 for brick infill wall.
- The output of analysis is modified by the customized interface for in house design module.
- 5) Provide the height of building in mt.
 - ▶ Height of building is 90.00 m
- 5A) Provide plan dimensions of the building (mt x mt)
 - \blacktriangleright L X B = 46.20 X 18.1
- 6) Provide following EQ loading details.

a)	Zone Factor		= III
b)	Importance factor		= 1
c)	Response Reduction factor		= 5
d)	Soil type		=Medium Soil
e)	% LL considered in seismic		= 0.25 ,0.5 %
f)	Time Period in the horizontal X-din	rection (sec) (from Formula in code)	= 1.11 sec
g)	Time Period in the horizontal Y-dim	rection (sec) (from Formula in code)	= 1.78 sec
h)	Total Seismic weight (Sw) of build	ling (kN)	= 207794
i)	Static Base-shear in X-direction	(as % of Sw)	=1.56%
j)	Static Base-shear in Y-direction	(as % of Sw)	=0.97%

Story	Load	Shoar X		Shoor V
Story	Case	kN	Load Case	kN
Story25	EQX 1	191.7924	EQY 1	119.6009
Story24	EQX 1	589.5833	EQY 1	367.6615
Story23	EQX 1	961.4759	EQY 1	599.572
Story22	EQX 1	1295.7826	EQY 1	808.0442
Story21	EQX 1	1594.6208	EQY 1	994.3984
Story20	EQX 1	1858.4633	EQY 1	1158.9294
Story19	EQX 1	2090.7519	EQY 1	1303.7835
Story18	EQX 1	2295.7375	EQY 1	1431.6116
Story17	EQX 1	2475.1266	EQY 1	1543.4778
Story16	EQX 1	2630.6256	EQY 1	1640.4463
Story15	EQX 1	2763.9409	EQY 1	1723.5811
Story14	EQX 1	2876.7789	EQY 1	1793.9465
Story13	EQX 1	2970.8462	EQY 1	1852.6064
Story12	EQX 1	3047.8491	EQY 1	1900.6251
Story11	EQX 1	3109.4941	EQY 1	1939.0666
Story10	EQX 1	3157.4876	EQY 1	1968.9952
Story9	EQX 1	3193.942	EQY 1	1991.7279
Story8	EQX 1	3220.3331	EQY 1	2008.1853
Story7	EQX 1	3237.9999	EQY 1	2019.2022
Story6	EQX 1	3248.6872	EQY 1	2025.8668
Story5	EQX 1	3255.0458	EQY 1	2029.832
Story4	EQX 1	3257.2198	EQY 1	2031.1877
Story3	EQX 1	3257.2198	EQY 1	2031.1877
Story2	EQX 1	3257.2198	EQY 1	2031.1877
Story1	EQX 1	3257.2198	EQY 1	2031.1877

k) Table of distribution for static base shear

1) Max. Deflection at roof level. (mm) = 122.5mm < (H/500= 166 CL 20.5 IS 456:2000) OK

m) Max. Inter stories drift. / Height = 5.7mm < (CL 7.11.1 IS 1893:2002 PART 1 not exceed 0.004 times stories height) OK

7)	Provide following Wind loading details.	
a)	Category of building	= 3
b)	Class of building	= C
c)	Basic wind speed in m/sec.	= 39m/sec
d)	Maximum wind pressure(kN/m2)	= NA
e)	Force coefficient	=0.7 ,0.5
f)	Wind Base-shear in the horizontal X-direction(kN)	=1560KN
g)	Wind Base-shear in the horizontal Y-direction (kN)	=3869 KN
h)	Gust factor calculations (if Gust-wind applied)	= NA
i)	Details of wind tunnel force data (if applicable)	= NA
j)	Estimated magnitude of wind induced vibrations	= NA
k)	Max. deflection at roof level (mm)	=66 mm
1)	Max. Inter stories drift.	=3.2 mm

8) Provide following data from Dynamic Analysis.

Modes	Frequency in Hz	Time Period in	X-participation	Y-participation
		sec		
Mode 1	0.297	3.371	62.44	0.02
Mode 2	0.31	3.225	3.32	0.15
Mode 3	0.339	2.947	0.0008748	63.07
Mode 4	0.979	1.021	10.12	0.0006694
Mode 5	1.053	0.95	4.49	0.001675
Mode 6	1.293	0.774	0	16.35
Mode 7	1.925	0.52	3.16	0.01
Mode 8	2.138	0.468	3.63	0.01
Mode 9	2.841	0.352	0.003436	7.35
Mode 10	3.061	0.327	1.91	0.003196
Mode 11	3.558	0.281	2.38	0.001285
Mode 12	4.385	0.228	1.52	0.01
Mode 13	4.887	0.205	0.01	4.45
	Summ	nation	92.98	91.426

(Note: Fundamental mode should not be a torsional mode)

9) Provide Table for lateral deflections (mm) at Terrace Level in the following format.

Load Case	Dx-max	H/Dx	Drift-x	Dy-max	H/Dy	Drift-y
DL	0.6	5833	0.000006	8.5	411	0.00018
DL+LL	0.77	4545	0.000007	12.7	275	0.00026
EQx	119.3	29.33	0.0009	14.5	241	0.000054
EQY	7.6	460.52	0.000142	76	46	1.00077
Wx	32.5	107.69	0.00029	2.3	1521	0.00004
WY	0.51	6862	0.000002	66.5	52.63	0.000747

10) Provide corner displacements (mm) for Torsional Irregularity (along X-direction) in the following format.

Load Case	Corner-1	Corner-2	Corner-3	Corner-4	Avg-x	%Max./Avg.
Eq-x	119.3	119.3	109.6	109.6	114.45	1.04 %
WI-x	32.4	32.4	30.9	30.9	31.65	1.02 %

11) Provide Corner displacements (mm) for Torsional Irregularity (along Y-direction) in the following format.

Load Case	Corner-1	Corner-2	Corner-3	Corner-4	Avg-Y	%Max./Avg.
Eq-Y	76	76	38.2	38.2	57.1	1.33 %
WI-Y	66	66	64	64	65	1.01%

12) Provide acceleration (mg) values in the following format.

Eq-X	Eq-Y	WL-X	WL-Y
100%	100%	100%	100%

- 13) Provide following data regarding Vertical Elements.
- a) Size of maximum loaded column

= 600 x 800 mm

= 6500 KN

b) Gravity load on max. loaded column

c)	Axial stress in max. loaded column (Gravity loads) = 13.54 N/m	
d)	Grade of max. loaded column	= 35 Mpa
e)	Axial settlement in max. loaded column = 2.6m	
f)	Axial settlement in min. loaded column $= 0.8 \text{ mm}$	
g)	%Base-shear resisted by all columns along X (static)	= 3.16 %
h)	%Base-shear resisted by all columns along Z (static)	= 1.77 %
14)	Provide, if applicable, following data regarding Floating Columns.	
a)	Total gravity load on floating column (provide table if	
	there are multiple floating columns)	=NA
b)	Size and span of girders supporting floating columns	=NA
c)	Number of floors supported by floating columns	=NA
d)	Deflection of girder under column (from model)	
e)	Deflection of girder under column (from s/s action)	=NA
f)	Specific details about floating columns on cantilever girders (Refer Ta	ble below)
15)	Provide, if applicable, following data regarding soft Story effect.	
a)	Stiffness of lower floor (in deflection/KN)	=NA
b)	Stiffness of lower floor (in deflection/KN)	=NA
c)	Relative stiffness ratio (upper/lower)	=NA
d)	Level of soft story	=NA
e)	Number of floors above soft story	=NA
16)	Provide, if applicable, following data for each cantilever.	
a)	Cantilever span	=NA
b)	Structural system	=NA
c)	Nature of usage	=NA
d)	Maximum elastic deflection under gravity loads	=NA

17) Provide stability calculations for uplift and overturning (model extract in case of model)=NA

18) Typical design calculations for footing

Soil pressure diagram

19) Typical design calculations for RCC columns

ETABS 2015 Concrete Frame Design

IS 456:2000 Column Section Design(Envelope)

	Column Element Details						
Level Element Section ID Length (mm) LLRF							
Story5	C3	CL 600X800 M35	3400	0.4			

	Section Properties						
b (mm) h (mm) dc (mm) Cover (Torsion) (mn							
800	600	75	45				

Material Properties						
E _c (MPa) f _{ck} (MPa) Lt.Wt Factor (Unitless) f _y (MPa) f _{ys}						
29580.4	35	1	500	500		

Design Code Parameters			
¥с	Ϋ́s		
1.5	1.15		

Longitudinal Reinforcement Design for P_u - M_{u2} - M_{u3} Interaction

Column End	Rebar Area mm²	Rebar %
Тор	3840	0.8
Bottom	3970	0.83

Design Axial Force & Biaxial Moment for Pu - Mu2 - Mu3 Interaction

Column End	Design P _u kN	Design M _{u2} kN-m	Design M _{u3} kN-m	Station Loc mm	Controlling Combo
	kN	kN-m	kN-m	mm	
Тор	2351.6604	-309.093	-296.4585	2800	DWal32
Bottom	5105.3317	-589.5943	-445.1179	0	DWal29

Shear Reinforcement	for	Major	Shear,	V_{u2}
---------------------	-----	-------	--------	----------

Column End	Rebar A _{sv} /s mm²/m	Design V _{u2} kN	Station Loc mm	Controlling Combo
Тор	886.75	0	2800	DWal32
Bottom	886.75	0	0	DWal32

Shear Reinforcement for Minor Shear, $V_{\rm u3}$

Column End	Rebar A _{sv} /s mm²/m	Design V _{u3} kN	Station Loc mm	Controlling Combo
Тор	665.06	20.0313	2800	DWal32
Bottom	665.06	20.0313	0	DWal32

20) Typical design calculations for RCC walls

ETABS 2015 Shear Wall Design

IS 456:2000 Pier Design

	Pier Details					
Story ID	Pier ID	Centroid X (mm)	Centroid Y (mm)	Length (mm)	Thickness (mm)	LLRF
Story4	P25	5638.7	5093.1	1825	300	0.4

	Material Properties						
E _c (MPa) f _{ck} (MPa) Lt.Wt Factor (Unitless) f _y (MPa) f _{ys} (
29580.4	35	1	500	500			

Design Co	de Parar	neters
-----------	----------	--------

۲s	Гс	IP _{MAX}	IP _{MIN}	P _{MAX}	MinEcc Major	MinEcc Minor
1.15	1.5	0.04	0.0025	0.8	Yes	Yes

Pier Leg Location, Length and Thickness

Station Location	ID	Left X ₁ mm	Left Y ₁ mm	Right X ₂ mm	Right Y ₂ mm	Length mm	Thickness mm
Тор	Leg 1	5638.7	4180.6	5638.7	6005.6	1825	300
Bottom	Leg 1	5638.7	4180.6	5638.7	6005.6	1825	300

Flexural Design for P_u, M_{u2} and M_{u3}

Station Location	Required Rebar Area (mm²)	Required Reinf Ratio	Current Reinf Ratio	Flexural Combo	Pu kN	M _{u2} kN-m	M _{u3} kN-m	Pier A _g mm²
Тор	9648	0.0176	0.0023	DWal29	7892.0123	373.1611	-552.7039	547500
Bottom	9926	0.0181	0.0023	DWal29	7986.456	376.4918	-559.3181	547500

Shear Design										
Station Location	ID	Rebar mm²/m	Shear Combo	P _u kN	M _u kN-m	V _u kN	V _c kN	V _c + V _s kN		
Тор	Leg 1	750	DWal29	7399.1702	193.5632	-109.1591	269.9795	665.1317		
Bottom	Leg 1	750	DWal29	7493.614	209.3064	-109.1591	269.9795	665.1317		

Boundary Element Check

Station Location	ID	Edge Length (mm)	Governing Combo	Pu kN	M _u kN-m	Stress Comp MPa	Stress Limit MPa
Top-Left	Leg 1	600	DWal29	7892.0123	-36.0973	14.63	7
Top-Right	Leg 1	600	DWal29	8355.2581	91.2148	15.81	7
Bottom-Left	Leg 1	600	DWal2	8449.7019	-126.3679	16.19	7
Botttom–Right	Leg 1	600	DWal2	7986.456	209.3064	15.84	7

21) Typical design calculations for RCC Beams

ETABS 2015 Concrete Frame Design

IS 456:2000 Beam Section Design (Envelope)

Beam Element Details								
Level Element		Section ID	Length (mm)	LLRF				
Story6	B339	B 230X600 M20	5609.9	0.991				

b (mm)	h (mm)	b _f (mm)	d₅ (mm)	d _{ct} (mm)	d _{cb} (mm)
230	600	230	0	35	60

Material Properties

E _c (MPa)	f _{ck} (MPa)	Lt.Wt Factor (Unitless)	f _y (MPa)	f _{ys} (MPa)
22360.68	20	1	500	500

Design Code Parameters

Yc	Ys
1.5	1.15

Flexural Reinforcement for Major Axis Moment, Mu₃

	End-I Rebar Area mm²	End-I Rebar %	Middle Rebar Area mm²	Middle Rebar %	End-J Rebar Area mm²	End-J Rebar %
Top (+2 Axis)	1553	1.13	408	0.3	1164	0.84
Bot (-2 Axis)	777	0.56	562	0.41	682	0.49

Flexural Design Moment, Mu3

	End-I Design M _u kN-m	End-I Station Loc mm	Middle Design M _u kN-m	Middle Station Loc mm	End-J Design M _u kN-m	End-J Station Loc mm
Top (+2 Axis)	-320.4224	0	-92.1879	1402.5	-234.9135	5609.9
Combo	DWal10		DWal10		DWal9	
Bot (-2 Axis)	0	0	116.8018	4207.4	137.7697	5609.9
Combo	DWal14		DWal14		DWal14	

Shear Reinforcement for Major Shear, $V_{\rm u2}$

End-I	Middle	End-J Rebar A _{sv} /s	
Rebar A _{sv} /s	Rebar A _{sv} /s		
mm²/m	mm²/m	mm²/m	
860.54	844.41	757.9	

	200	9		-) - uz	
End-I Design V _u kN	End-I Station Loc mm	Middle Design V _u kN	Middle Station Loc mm	End-J Design V _u kN	End-J Station Loc mm
209.71	935	0.1878	1402.5	182.0125	5142.4
DWal28		DWal29		DWal29	

Design Shear Force for Major Shear, $V_{\rm u2}$

Torsion Reinforcement Shear Rebar A_{svt} /s <u>mm²/m</u> 565.43

Design Torsion Force

Design T _u kN-m	Station Loc mm	Design T _u kN-m	Station Loc mm
0.9458	0	3.6846	5609.9
DWal10		DWal29	

PROJECT DATA SHEET

UNIT NO._____

DESIGNS (R & B), GANDHINAGAR

Sr. No.		Ι	Description	
1.	Name of Project		Jewel Residency (Block A)
	Project file No.			
2.	(To be filled by			
	Design Circle).			
	Project Team	EE	DEE	AE
3.	(To be filled by			
	Design Circle).			
4.		Proje	ct Referred By:	1
		Name of Office	Contact Person	Telephone Nos.
(a)	Circle			
(b)	Division			
(c)	Sub-Division			
5.	Consultants of the	project:	T	
(a)	Nature of C	Consultancy	Architect	Structural Consultant
(b)	Nature of	the firm	Pandya Associates	Setu Infrastructure
(c)	Add	ress	Architects and Engineers, 64, sharda Nagar, Paldi, Ahmedabad – 380007	308,Abhishilp Complex, B/h. Puja Party Plot, Judges Bungalow Road, off. 132 ft. Ring Road, Vastrapur, Ahmedabad - 380015.
(d)	Authorized R	epresentative		
(e)	Telephone, I	Fax, E-mail	079 26633666	07940037661/26751800 Email: <u>setuinf@gmail.com</u>
			New Constructio	n -Residential
6. (a)	Nature of Project			
7. (a)	Work order office No. with date	letter outward	01 August 2015	
(b)	Stipulated date of per agreement	starting work as	01 September 20	15
(c)	Stipulated date of work as per agree	completion of ment.	29 February 201	6

8.	Details of Building	
(a)	Туре	Load Frame
(h) ;	¹ As per AMC Submission Plan*	$14012 \ 40 \ m^2$
(0) 1	Total floor area in m ²	14012.49 III
ii	As per Structural Design** - Total	14634.86 m^2
	floor area in m ² for	(Additional 622.87 Sq. Mt Built up added for 20th Floor)
		contra and est
		$\{ [3^{ct} B + 2^{ct} B + 1^{ct} B] \}$
		$[2^{nd} \text{ to } 15^{th} \text{ floor}] +$
		$[16^{\text{th}} \text{ to } 19^{\text{th}} \text{ floor}] +$
		+ [SC + LMR + OHWT + Air Antenna]
		= Total Height
(a) ;	Total height from Basement to Top	
(0)1	in m ² As per AMC Plan*	$\{[4.650 \text{ mt} + 3.45 \text{ mt} + 4.05 \text{ mt}] +$
	•	[0.45 mt +4.50 mt +3.45 mt]+
		[44.10 mt (3.15 mt x 14 floor)] +
		$[13.80 \text{ mt} (3.45 \text{ mt} \times 4 \text{ floor}]$
		+ [8.42 mt]
		- 60.67 Int
		$\{[3^{rd} B + 2^{nd} B + 1^{st} B] +$
		[Plinth + GF + FF] +
		$[2^{nd} \text{ to } 16^{th} \text{ floor}] +$
		$[17^{\text{m}} \text{ to } 20^{\text{m}} \text{ floor}] +$
		[SC + LMR + OHW I + Air Antenna] - Total Height
	Total height from Basement to Ton	= Total Height
ii	in m As ner structural Design**	$\{[4.650 \text{ mt} + 3.45 \text{ mt} + 4.05 \text{ mt}] +$
	in in his per structural Design	[0.45 mt + 4.50 mt + 3.45 mt] +
		[47.25 mt (3.15 mt x 15 floor)] +
		[13.80 mt (3.45 mt x 4 floor] +
		[8.42 mt]}
		= 90.02
		[Plinth + GF + FF] +
		$[2^{nd} \text{ to } 15^{th} \text{ floor}] +$
		$[16^{th} \text{ to } 19^{th} \text{ floor}] +$
		+ [SC + LMR + OHW T + Air Antenna]
_	Total height from GL in m	$= 101a1 \text{ Height} \\ [0.45 \text{ mt} + 4.50 \text{ mt} + 3.45 \text{ mt}]+$
iii	As per AMC Plan*	[44.10 mt (3.15 mt x 14 floor)] +
		[13.80 mt (3.45 mt x 4 floor]
		+[8.42 mt]
		= 74.72mt
L		

^{*}As per AMC Submission plan there is 3B+G+19 stories building.

^{**} As consideration of future expansion & with consideration to Use of Extra chargeable FSI & or TDR bases development plan we have structurally design this building for 3B+G+20 stories

		[Plinth + GF + FF] +			
		$[2^{n\alpha} \text{ to } 16^{nn} \text{ floor}] +$			
		$[1/^{m}$ to 20 ^m floor] + [SC + LMB + OHWT + Air Antonnol			
	Total height from GL in m	- Total Height			
iv.	As ner structural Design** ³	[0.45 mt + 4.50 mt + 3.45 mt] +			
	ns per structurur Design	[47.25 mt (3.15 mt x 15 floor)] +			
		[13.80 mt (3.45 mt x 4 floor]+			
		[8.42 mt]}			
		= 77.87m			
(d)	No. of stories ; As per AMC Plan*	3B+G+19			
	As per Structural Design **	3B+G+20			
(e)	Base dimension bx in m	46.20			
(f)	Base dimension bz in m	18.1			
9.	Exposure condition:				
(a)	Туре	Moderates			
(b)	Minimum Grade of RCC	M20			
(c)	Minimum Grade of PCC	M15			
10.	Fire Resistance Rating in Hours.				
(a)	Building height Up to 15 m.	1 Hour			
(b)	Building height more than 15 m.	2 Hour			
11	Nominal Cover (Clear cover) in mm (To main reinforcement considering				
	exposure condition & fire resistance				
(a)	Footing	50			
(b)	Column	40			
(c)	Beam below Ground level	20			
(d)	Beam above Ground level	30			
(e)	Slab	25			
12.	Dead Loads:				
(a)	Earth	18.00 KN/m^3			
(b)	Water	10.00 KN/m^3			
	Brick masonry with plaster/	finish on both faces			
(c)	115 Thk.	2.90 KN/m^3			
(d)	230 mm Thk.	5.30 KN/m^3			
(e)	350 mm Thk.	7.70 KN/m^3			
(f)	PCC	24.0 KN/m^3			
(g)	RCC	25.0 KN/m^3			
13.	Imposed loads (As per IS:875-1987)				
(a)	Occupancy	Imposed load (in KN/m ²)			
	Basement Parking Area	3 KN/m^2			
	Shops Area	3 KN/m ²			
	Typical Storey	2 KN/m^2			
	Staircase + Foyer	3 KN/m^2			
	Roof load:-	1 5 KN1/2			
(b)	Accessible	1.3 KIN/M			

 $^{^3\,}$ *As per AMC Submission plan there is 3B+G+19 stories building .

^{**} As consideration of future expansion & with consideration to Use of Extra chargeable FSI & or TDR bases development plan we have structurally design this building for 3B+G+20 stories

	Roof load:-		
(c)	Not accessible	KN/m^2	
	Slope Angle.		
(d)	Water Tank:		
	(i) Type	PVC/RCC	
	(ii) Capacity in Liters	25000 Liters	
	(iii) Height in m	4048.76mm	
	(iv) Diameter in m	2999.74mm	
	(v) Nos. & position	2 tanks	
14.	Earthquake Load Date:		
(a)	Earthquake Zone	III	
(b)	Zone Factor 'Z'	0.16	
(c)	Importance Factor 'I'	1.0	
(d)	Response Reduction Factor 'R'	5	
(0)	Natural Period:	1 78	
(e)	Tx (Sec.)	1.78	
(f)	Natural Period:	1 11	
(1)	Tz (Sec.)	1.11	
(g)	Live Load Reduction Factor	0.25,0.5	
(h)	Ductility detailing as per IS:13920-	Vec	
(11)	1993	165	
15	Soil Data:		
(a)	Soil Report No. & Date	ST/14/09/6663	
(b)	Depth of foundation below GL	12 m	
(c)	SBC	31 T / m ²	
(d)	Type of soil	Medium	
(e)	N-value	60	

CERTIFICATE

It is hereby certified that the building Structure of Project Jewel Residency has been designed for following:

(A) Latest revision/amendments of following IS Codes considered in the design:

(1)	IS:456-2000	 Yes
(2)	IS:1893-2002	 Yes
(3)	IS:13920-1993	 Yes
(4)	IS:4326-1993	 No
(5)	IS:875-1987	 Yes

- (B) SBC, N-Value and foundation depth are taken as per the Soil Report No. ST/14/09/6663 Dt. Sept.
 2014 prepared by K.C.T. Consultancy Services.
- (C) The design is based on the sound engineering practice and undersigned are solely responsible for the correctness of design and soundness, durability & strength of the structure.

Contractor	Consultant	signed in my presence (Executive Engineer) Div
Name:	Name:	Name:
Sign:	Sign:	Sign:

<u>Annexure – I</u>

STRUCTURAL DESIGN BASIS REPORT

PROJECT : **PROPOSED DEVELOPMENT OF HIGHRISE BUILDINGS AT AHMEDABAD, GUJARAT.**

<u>CLEINT</u> : <u>JEWEL RESIDENCY (BLOCK-B)</u>

ARCHITECT: PANDYA ASSOCIATES.

STRUCTURAL CONSULTANTS: SETU INFRASTRUCTURE

1. INTRODUCTION

The proposed Building consists of 3 Basement + 1 Ground floor +19 stories and Overhead water two water tanks with 25000 lit as per AMC Submission plan however As consideration of future expansion & with consideration to Use of Extra chargeable FSI & or TDR bases development plan we have structurally design this building for 3 Basement + 1 Ground floor +20 stories and Overhead water two water tanks with 25000 lit

The building is meant for use Residential, Three Basement and ground floor partial area are used as car parking area .The Structural system for the Building consists of Slab with Beam, R.C. Columns/Shear Walls.

Brick bat coba waterproofing on terrace including floor finish (150mm thk) is considered as $0.15x20 \text{ kN/m}^3 = 3.0 \text{ kN/m}^2$. (As In Tabulated)

2. <u>DESIGN LOADS</u>

a) Dead Loads

The self-weight of the various elements are computed based on size and density of materials as given below:-

Density of Reinforced Cement Concrete	$=25 \text{ kN/m}^3$
Density of Plain Cement Concrete	$= 24 \text{ kN/m}^3$
Density of Steel	$= 78.5 \text{ kN/m}^3$
Density of Soil	$= 18 \text{ kN/m}^3$
Density of Brick with plaster	$= 20 \text{ kN/m}^3$
Floor finish	= 1.5kN/m ²
SiporexWall : Density :	$=8.0 \text{ kN/m}^{3}$

b) Floor Loads

Floor	SIDL Siporex	LL	FF including	Remarks
	Wall load	Kn/m ²	Screed + Ducting	
	Kn/m ²		Kn/m ²	
First Basement	Nil	3	1.5	
Second Basement	Nil	3	1.5	
Third Basement	Nil	6	1.5	
GF	2.5	3	1.5	Shops 3.0kn/m ² ,
				Access Road
				outside building
				design for (Fire
				Engine) 50 tn or
				15kn/m ²
TypFlr (1 st to 20	2	2	1.5	Stair case foyer –
stories floor)				3kn/m ²
RF		1.5	3	

c) Loads as per IS 875(part 2) -1987

Area	Live Load (KN/m2)	Floor Finish including	Siporex Wall Load
		Screed + ducting	Kn/m ²
		(KN/m^2)	
Show Room detail	3.0	1.5	2.5
Toilets & Bath Rooms	2.0	3 (if Sunk)/1.5	2
		without sunk	
Staircase,	3.0	1	Nil
Corridors,Ramp,Fire			
escape			
Fire Engine (outside	15.0kn/m^2	1.5	Nil
building			
at GF)			

FOS against uplift due to ground water table considered 1.0

d) Wind Load

The wind pressure has been calculated based on the data furnished below and other provision laid in IS875 (Part-3) - 1987.

Basic Wind Speed (pg53)		Vb	=	39 m/sec
Risk Coefficient Factor (pg	11)	K1	=	1.0
Terrain Category (Pg 8)			=	3
Structure Class (pg 11)			=	C (Ht More than 50m)
Terrain, Height &				
Structure Size Factor	K2		=	1
Topography Factor	K3		=	1

e) Earthquake Load

The loading due to earthquake is assessed based on the provisions of IS: 1893 (Part-1):2002

Seismic Zone	(pg 36)		= III
Table-2	Zone factor (Z)		= 0.16.
Table-6	Importance Factor (I)		= 1
Table-7	Response Reduction Fa	ctor (R)	= 5
	Soil type As per ge	otechnical 1	report and in accordance with Cl.
	No. 6.4.5 IS 1893-2002		
	Height of building (h) =	3B+GF+208	Storey
	= (4.7+3.4+3.4) + (4.6)	+ (3.2x20)	
	= 84.2 Approx.		

Fundamental Natural Time Period (Ts) with brick infill walls

Block B
X- dir

$$T=0.09xh$$

 \sqrt{d}
 $= 0.09x83.2$
 $\sqrt{38}$
 $= 1.23$ Sec
Y - dir.
 $T=0.09xh$
 \sqrt{d}
 $= 0.09x83.2$
 $\sqrt{21.4}$
 $= 1.64$ Sec

Horizontal seismic coefficient

 $Ah = \frac{Z \times I \times Sa}{2 \times Rx \text{ g}}$

3. CHECK FOR LATERAL SWAY AS PER IS Codes

The allowable lateral sway at top should not exceed H/500(For wind Forces).Storey Drift shall not exceed 0.004 i.e (1/250) H(For Seismic forces).Where, H is total height of Building.

4. BASIC LOADS AND LOAD COMBINATIONS

The various loads are combined in accordance with the stipulations in IS:875 (Part5) 1987. Wherever imposed load is combined with earthquake load the appropriate part of the imposed load as specified in IS:1893-2002 is adopted both for evaluating earthquake effect and for combined load effects, used in such combination.

BASIC LOAD CASES

Load case	Mark	Description
1	EQX	SEISMIC LOAD IN X DIR.
2	EQY	SEISMIC LOAD IN Y DIR.
3	DL+FF	FLOOR SLAB & FINISH LOAD
4	WL	WALL LOAD
5	LIVE1	LIVE LOAD =<3 kN/m ²
6	LIVE2	LIVE LOAD > 3 kN/m^2

5. LOAD FACTORS FOR DESIGN

Description of Load Combination	Load Factor for Primary Load Cases				
Description of Load Combination	Dead Load	Live Load	Wind Load	Seismic Load	
Dead load + Live load	1.5	1.5	0.0	0.0	
Dead load + Wind load	1.5	0	1.5	0.0	
Dead load+Seismic load	1.5	0	0	1.5	
Dead load+Liveload+Wind load	1.2	1.2	1.2	0.0	
Dead load+Liveload+Seismic load	1.2	1.2	0	1.2	
Dead + Seismic	0.9	0	0	1.5	
Dead load+Wind load	0.9	0	1.5	0	

6. ANALYSIS METHOD

Basic modeling has been generated in our customized Programme along with all primary loadings and the same is exported in ETAB for analysis. The output of analysis is modified again by customized interface package for in-house design module.

The structure will be analyzed for Static and Dynamic and Lateral loads due to Earthquake/Wind loads and its combinations in ETAB Software.

7. <u>DESIGN METHODOLOGY</u>

All structures have been designed according to the Limit State Method as specified in IS:456-2000. Appropriate loads and its combinations, as per relevant clauses in Code IS 456:2000 Code IS 875 (Part-5) 1987, for the most unfavorable effects are chosen for design.

8. CONSTRUCTION DETAILS

1. Open Foundation	-	Concrete Mix M:25 & Steel Fe 415
2. Columns/Shear wall	-	Concrete Mix M:30 M: 35 M: 40 & Steel Fe 415
3. Beams & Slabs	-	Concrete Mix M:20 M: 25& Steel Fe 415
4. R.C. Retaining Wall	-	Concrete Mix M:20M: 25& Steel Fe 415
5. External Wall	-	150 thk Siporex block wall
		as per architectural layout.
6. Internal Wall	-	100 thk Siporex block wall
		as per architectural layout.
7. Typical Floor Height	-	As per Arch Drawing

9. <u>CONCRETE</u>

All the concrete items for the construction have the following characteristics

Grade of Concrete	= M:25, M30, M:35 , M:40	
	(Concrete design Mix as per IS 456-2000)	
	M15 (For P.C.C.)	
Aggregate	= 20mm and down size, mechanically crushed	
	Aggregate	

10. <u>REINFORCEMENT</u>

Steel reinforcement shall be of Grade Fe500.

11. EXPOSURE CONDITION

Structural elements below Plinth level and External column and beam are designed for Moderate exposure condition and internal column, floor beams and slabs are designed for mild exposure condition as per Table 16 of IS 456-2000.

12. COVER TO REINFORCEMENT

The nominal cover to main reinforcement shall be as follows.

	Cove	r	Fire resistance (Hours)
Staircase waist slab	=	35mm	2
Slab	=	25mm	1.5
Columns	=	40mm	2
Floor Beams	=	30mm	2
Retaining Wall	=	40mm	2

13. FOUNDATION SYSTEM

The building has been supported on columns with shear wall with raft foundation as per recommendation in SIR.

Safe allowable bearing capacity is considered as per soil investigation report.

14. CODES & STANDARDS

All the designs are conforming to the relevant Indian Standards. Some of the relevant Indian Standard Codes, which have been followed for the structural designs, are given below.

Code	Description	
IS:875 (Part-1)-1987	Code of Practice for Design Loads (Other	
	than Earthquake) for Building and	
	Structures-Unit Weights of Buildings	
	Materials and Stored Material.	
IS:875 (Part-2)-1987	Code of Practice for Design Loads (Other	
	than Earthquake) for Building and	
	Structures-Imposed loads	
IS:875 (Part-3)-1987	Code of Practice for Design Loads (Other	
	than Earthquake) for Buildings and	
	Structures –Wind Load.	
IS:875 (Part-5)-1987	Code of Practice for Design Loads (Other	
	than Earthquake) for Buildings and	
	Structures – Special Loads and Load	
	Combinations	
IS:456 2000	Code of Practice for Plain and Reinforced	
	ConcreteIS:1893 (Part-1)-2002 Indian	
	Standard Criteria for Earthquake Resistant	
	Design of Structures	
IS:13920-1993	Ductile Detailing of reinforced concrete	
	structures subjected to seismic forces -	
	code of practice.	
IS:1904	Indian Standard Code of practice for	

	Design &Construction foundations in Soil:	
	General Requirements.	
IS:1642-1989	Indian Standard Code of practice for Fire	
	Safety Of Buildings (General) : Details Of	
	Construction.	

APPENDIX – II

DESCRIPTION OF SUB-STRUCTURE

No. of basements		3
Minimum clearance between		0.87 m
outermost basement retaining		
wall and compound wall		
Has a Shoring system been		NO
installed? Submit sectional detail		
of the shoring system		
Give details of methodology used	Bottom Level of Raft w.r.t.	15.0 m
to resist uplift pressure due to	ground level in mts.	
ground water for tower portion as	T- (-1 1	
tower	Total downward load of self-	
lower.	over reft + Pock Anchors if any	
	(for raft spanning between	
	columns)	
	corumnsy	
	Whether pressure release pipes	
	have been used?	
	Water level assumed for uplift	
	calculation	
Description of the foundation for		
the tower block		
Nature of Foundation	Piles, Spread Footings,	Combined Raft ,Spread Footing
	Combined Raft, Piled Raft, etc.	21 77 / 2
SBC assumed T/sq.mt.		31 T/m ²
Sub-grade Elastic Modulus	UDE IDG	6000Kn/m ³
Flooring system of the	VDF or IPS	
Basements	Wilson Duran and a sufficiency	Decrease 1 Constituence
Retaining wall types & Sequence	Whether Proposed cantilever,	Proposed Cantilever
of backfinning	Puttrassas/Counter forts ata	
Intended Use of becoments	Buttlesses/Counter forts, etc.	Darking
If rock anchors are used, are they		Not Applicable
grouted after installation and		
stressing?		
Is structural steel used in the		NO
construction of the sub-structure?		
If yes. What are the measures		Not Applicable
taken for its fire proofing and		
corrosion resistance?		

Whether Expansion/Separation joints provided?	NO
Whether expansion joint/separation joint continues through basement?	
If yes, detail at Basement level & retaining wall junction	

APPENDIX – III

DESCRIPTION OF SUPER STRUCTURE

No. of Floors & height of building in mt.	$\{[3^{rd} B + 2^{nd} B + 1^{st} B] +$
6	[Plinth + GF + FF] +
	$[2^{nd} \text{ to } 15^{th} \text{ floor}] +$
	$[16^{\text{th}} \text{ to } 19^{\text{th}} \text{ floor}] +$
	[20 th Floor]+
	[SC + LMR + OHWT + Air Antenna]
	= Total Height
	$\{[4.650 \text{ mt} + 3.45 \text{ mt} + 4.05 \text{ mt}] +$
	[0.45 mt + 4.50 mt + 3.45 mt] +
	[44.01 mt (3.15 mt x 14 floor)] +
	$[13.80 \text{ mt} (3.45 \text{ mt} \times 4 \text{ floor}]$
	[3.45 mt] +
	[8.41 mt]
	= 90.00 mt
Shape of Building Plan Flavation whether	Pactangular
Shape of Bunding, I fan, Elevation, whether	Rectangular
	20.0
Maximum plan dimension in either direction in mt.	38.0m
Ratio of plan dimension	1.77
Typical floor to floor height in mt.	3.2 m
Maximum floor to floor height in entire height of	4.7 m
building in mt.	
Aspect ratio	80 5/21 4 = 3 76
(Height of Building till Terrace / Minimum	0010/2111 0110
Dimension of Duilding)	
Tune of floor slob	One Wey, True Wey
Type of floor stab	One way, Two way
Average thickness of floor slab in mm.	150 mm
Whether column are RCC, Composite or in	RCC
structural steel	
Lateral System	Ductile Shear Wall with SMRF
Whether the Geometry of Building is Symmetric	Yes
, <u>,</u>	
Whether the lateral load resisting system is	Ves
symmetrically placed in Coometry	
Symmetrically placed in Geometry	2 rd December 1 C E and 1 for Communi-1
Use of floor at different levels (Residential /	3 th Basement floor and G.F. used for Commercial,
Commercial / industrial)	1 st to 19 st floor used for Residential
Use of floor at different levels (Resident /	Resident / Commercial
Commercial / industrial)	
Is there any Transfer level?	NO
If yes, depth of Transfer Girder	

Whether expansion joint is provided?	Not Require
If yes, what is the maximum plan dimension in mt.	
Whether separation gap at the joint is sufficiently	Not Require
provided?	
Maximum cantilever projection in mt.	2 m

- 3) Provide brief Description of Structural System with sketches, images of dwg. etc. with specific focus on _Lateral load resisting system.
 - > Shear wall provide for lateral resisting system.

4) Provide brief note on modeling, software used etc. Clearly mention whether infill / partition wall is idealized as part of lateral load system?

- Model has been generated in ETABS-2015 by the architectural grid.
- > Material properties, section properties and loading parameters input in ETABS.
- ▶ For Earthquake load Time period input as per IS 1893-2002 for brick infill wall.
- The output of analysis is modified by the customized interface for in house design module.

5) Provide the height of building in mt.

- ➢ Height of building is 90.00 m
- 5A) Provide plan dimensions of the building (mt x mt)
 - ▶ L X B = 38 X 21.4
 - 6) Provide following EQ loading details.

a)	Zone Factor		= III
b)	Importance factor		= 1
c)	Response Reduction factor		= 5
d)	Soil type	=	=Medium Soil
e)	% LL considered in seismic		=0.25,0.5
f)	Time Period in the horizontal X-direct	ction (sec) (from Formula in c	ode) =1.23 sec
g)	Time Period in the horizontal Y-direct	ction (sec) (from Formula in c	ode) =1.64 sec
h)	Total Seismic weight (Sw) of building	g (kN)	=214635
i)	Static Base-shear in X-direction	(as % of Sw)	=1.33%
j)	Static Base-shear in Y-direction	(as % of Sw)	=0.99%

Champ	Load	Chase V		Chara V
Story	Case	Snear X	Load Case	Snear Y
		KN		KN
Story25	EQX 1	137.1002	EQY 1	102.8252
Story24	EQX 1	498.089	EQY 1	373.5674
Story23	EQX 1	827.7208	EQY 1	620.7912
Story22	EQX 1	1123.9429	EQY 1	842.9585
Story21	EQX 1	1389.3948	EQY 1	1042.0474
Story20	EQX 1	1622.8068	EQY 1	1217.1064
Story19	EQX 1	1828.0481	EQY 1	1371.0374
Story18	EQX 1	2009.1656	EQY 1	1506.8755
Story17	EQX 1	2167.667	EQY 1	1625.7515
Story16	EQX 1	2305.0599	EQY 1	1728.7962
Story15	EQX 1	2422.8522	EQY 1	1817.1405
Story14	EQX 1	2522.5516	EQY 1	1891.915
Story13	EQX 1	2605.6659	EQY 1	1954.2507
Story12	EQX 1	2673.7027	EQY 1	2005.2784
Story11	EQX 1	2728.1699	EQY 1	2046.1287
Story10	EQX 1	2770.5977	EQY 1	2077.9496
Story9	EQX 1	2802.8435	EQY 1	2102.1339
Story8	EQX 1	2826.1883	EQY 1	2119.6425
Story7	EQX 1	2841.8158	EQY 1	2131.3631
Story6	EQX 1	2851.2695	EQY 1	2138.4534
Story5	EQX 1	2856.4658	EQY 1	2142.3506
Story4	EQX 1	2858.2855	EQY 1	2143.7154
Story3	EQX 1	2858.2855	EQY 1	2143.7154
Story2	EQX 1	2858.2855	EQY 1	2143.7154
Story1	EQX 1	2858.2855	EQY 1	2143.7154

k) Table of distribution for static base shear

Max. Deflection at roof level. (mm) = 82mm < (H/500= 166 CL 20.5 IS
 456:2000) OK

m) Max. Inter stories drift. / Height = 3.4mm < (CL 7.11.1 IS 1893:2002 PART 1 not exceed 0.004 times stories height) OK

7)	Provide following Wind loading details.	
a)	Category of building	= 3
b)	Class of building	= C
c)	Basic wind speed in m/sec.	= 39m/sec
d)	Maximum wind pressure(kN/m2)	= NA
e)	Force coefficient	= 0.7,0.5
f)	Wind Base-shear in the horizontal X-direction(kN)	= 1366 KN
g)	Wind Base-shear in the horizontal Y-direction (kN)	= 2396 KN
h)	Gust factor calculations (if Gust-wind applied)	= NA
i)	Details of wind tunnel force data (if applicable)	= NA
j)	Estimated magnitude of wind induced vibrations	= NA
k)	Max. deflection at roof level (mm)	= 45 mm
1)	Max. Inter stories drift	= 2.28 mm

Modes	Frequency in Hz	Time Period in	X-participation	Y-participation
		sec		
Mode 1	0.311	3.213	0.002681	0.001954
Mode 2	0.359	2.789	63.31	0.05
Mode 3	0.362	2.764	0.05	60.86
Mode 4	1.004	0.996	0.01	0.000148
Mode 5	1.207	0.828	14.53	0.000251
Mode 6	1.349	0.741	0.000253	15.84
Mode 7	1.891	0.529	0.05	7.22E-05
Mode 8	2.423	0.413	7.59	0
Mode 9	2.868	0.349	0.001097	0.03
Mode 10	2.926	0.342	0	8.06
Mode 11	3.825	0.261	3.59	0
Mode 12	4.143	0.241	1.73	0.000246
Mode 13	4.995	0.2	0	5.69
	Summ	nation	90.86	90.54

8) Provide following data from Dynamic Analysis.

(Note: Fundamental mode should not be a torsional mode)

9) Provide Table for lateral deflections (mm) at Terrace Level in the following format.

Load Case	Dx-max	H/Dx	Drift-x	Dy-max	H/Dy	Drift-Y
DL	0.282	12411	0.000053	11.2	312.5	0.000212
DL+LL	0.25	14000	0.00061	14.34	244	0.000273
EQx	80.2	43.64	0.00088	17.8	196.62	0.000175
EQy	8.2	426.82	0.00013	67.9	51.54	0.00143
Wx	25.6	136.71	0.000241	0.26	13461	0.000006
Wy	0.043	81395	0.000004	45.818	76	0.000503

10) Provide corner displacements (mm) for Torsional Irregularity (along x-direction) in the following format.

Load Case	Corner-1	Corner-2	Corner-3	Corner-4	Avg-x	%Max./Avg.
Eq-x	80.2	80.2	60	60	70.1	1.14 %
WI-x	25.6	25.6	25.3	25.3	25.45	1.00 %

11) Provide Corner displacements (mm) for Torsional Irregularity (along z-direction) in the following format.

Load Case	Corner-1	Corner-2	Corner-3	Corner-4	Avg-x	%Max./Avg.
Eq-y	67.9	67.9	39.4	39.4	53.65	1.26 %
WI-y	45.8	45.8	45.8	45.8	45.8	1.00%

12) Provide acceleration (mg) values in the following format.

Eq-X	Eq-Y	WL-X	WL-Y
100%	100%	100%	100%

13) Provide following data regarding Vertical Elements.

a)	Size of maximum loaded column	= 600 x 800 m
b)	Gravity load on max. loaded column	= 5357 KN
c)	Axial stress in max. loaded column (Gravity loads)	= 11.16 N/mm2
d)	Grade of max. loaded column	= 35 Mpa
e)	Axial settlement in max. loaded column	= 2.76mm
f)	Axial settlement in min. loaded column	= 0.7 mm
g)	%Base-shear resisted by all columns along X (static)	= 2.97 %
h)	%Base-shear resisted by all columns along Z (static)	= 4.43 %

14) Provide, if applicable, following data regarding Floating Columns.

a)	Total gravity load on floating column (provide table if	
	there are multiple floating columns)	=NA
b)	Size and span of girders supporting floating columns	=NA
c)	Number of floors supported by floating columns	=NA
d)	Deflection of girder under column (from model)	=NA
e)	Deflection of girder under column (from s/s action)	=NA
f)	Specific details about floating columns on cantilever girders (Refer Table	below)
15)	Provide, if applicable, following data regarding soft Story effect.	
a)	Stiffness of lower floor (in deflection/KN)	=NA
b)	Stiffness of lower floor (in deflection/KN)	=NA
c)	Relative stiffness ratio (upper/lower)	=NA
d)	Level of soft story	=NA
e)	Number of floors above soft story	=NA

16)	Provide, if applicable, following data for each cantilever.	
a)	Cantilever span	=NA
b)	Structural system	=NA
c)	Nature of usage	=NA
d)	Maximum elastic deflection under gravity loads	=NA

17) Provide stability calculations for uplift and overturning (model extract in case of model) =NA

Typical design calculations for footings 18)

Soil pressure diagram

19) Typical design calculations for RCC columns

ETABS 2015 Concrete Frame Design

IS 456:2000 Column Section Design(Envelope)

Column Element Details

Level	Element	Section ID	Length (mm)	LLRF
Story4	C3	CL 600X800 M35	4600	0.4

Section Properties					
b (mm) h (mm) dc (mm) Cover (Torsion) (mr					
800	600	77.6	45		

Material Properties						
E _c (MPa)	f _{ck} (MPa)	f _y (MPa)	f _{ys} (MPa)			
29580.4	35	1	500	500		

Design Code Parameters

¥c	¥s
1.5	1.15

Longitudinal Reinforcement Design for Pu - Mu2 - Mu3 Interaction

Column End	Rebar Area mm²	Rebar %
Тор	3840	0.8
Bottom	3840	0.8

Design Axial Force & Biaxial Moment for P_u - M_{u2} - M_{u3} Interaction

Column End	Design P _u kN	Design M _{u2} kN-m	Design M _{u3} kN-m	Station Loc mm	Controlling Combo
	kN	kN-m	kN-m	mm	
Тор	3051.6577	-23.9744	85.4464	4000	DWal32
Bottom	3094.8577	103.4623	86.656	0	DWal32

Shear Reinforcement for Major Shear, Vu2

Column End	Rebar A _{sv} /s mm²/m	Design V _{u2} kN	Station Loc mm	Controlling Combo
Тор	886.75	0	4000	DWal32
Bottom	886.75	0	0	DWal32

Shear Reinforcement for Minor Shear, $V_{\rm u3}$

Column End	Rebar A _{sv} /s mm²/m	Design V _{u3} kN	Station Loc mm	Controlling Combo
Тор	665.06	28.9299	4000	DWal32
Bottom	665.06	28.9299	0	DWal32

20) Typical design calculation s for RCC walls

ETABS 2015 Shear Wall Design

IS 456:2000 Pier Design

	Pier Details						
Story ID	Pier ID	Centroid X (mm)	Centroid Y (mm)	Length (mm)	Thickness (mm)	LLRF	
Story4	PW11	2552.7	9273	3276.5	300	0.4	

Material Properties					
	E _c (MPa)	f _{ck} (MPa)	Lt.Wt Factor (Unitless)	f _y (MPa)	f _{ys} (MPa)
	29580.4	35	1	500	500

Design Code Parameters							
۲s	Гc	ΙΡ _{ΜΑΧ}		Рмах	MinEcc Major	MinEcc Minor	
1.15	1.5	0.04	0.0025	0.8	Yes	Yes	

Pier Leg Location, Length and Thickness

Station Location	ID	Left X ₁ mm	Left Y ₁ mm	Right X ₂ mm	Right Y ₂ mm	Length mm	Thickness mm	
Тор	Leg 1	914.4	9273	4190.9	9273	3276.5	300	
Bottom	Leg 1	914.4	9273	4190.9	9273	3276.5	300	

Flexural Design for P_u, M_{u2} and M_{u3}

Station Location	Required Rebar Area (mm²)	Required Reinf Ratio	Current Reinf Ratio	Flexural Combo	Pu kN	M _{u2} kN-m	M _{u3} kN-m	Pier A _g mm ²
Тор	5823	0.0059	0.0023	DWal29	11663.4115	-423.2161	1381.1581	982962
Bottom	6572	0.0067	0.0023	DWal29	11832.9724	429.1959	1501.0255	982962

	Shear Design									
Station Location	ID	Rebar mm²/m	Shear Combo	Pu kN	M _u kN-m	V _u kN	V _c kN	V _c + V _s kN		
Тор	Leg 1	750	DWal29	10129.41	699.1246	-235.3659	464.7595	1174.2017		
Bottom	Leg 1	750	DWal29	10298.971	1501.0255	-235.3659	488.13	1197.5723		

Boundary Element Check

Station Location	ID	Edge Length (mm)	Governing Combo	Pu kN	M _u kN-m	Stress Comp MPa	Stress Limit MPa
Top-Left	Leg 1	750	DWal29	11663.4115	-532.9768	12.86	7
Top-Right	Leg 1	750	DWal29	11807.7372	107.1924	12.21	7
Bottom-Left	Leg 1	900	DWal29	11832.9724	-1431.6964	14.71	7
Botttom–Right	Leg 1	900	DWal29	11832.9724	1501.0255	14.83	7

21) Typical design calculations for RCC beams

ETABS 2015 Concrete Frame Design

IS 456:2000 Beam Section Design (Envelope)

Beam Element Details

Level	Element	Section ID	Length (mm)	LLRF
Story6	B71	B 230X600 M20	5908.8	1

Section Properties								
b (mm)	h (mm)	b _f (mm)	d₅ (mm)	d _{ct} (mm)	d _{cb} (mm)			
230	600	230	0	60	60			

Material Properties								
E _c (MPa)	f _{ck} (MPa)	Lt.Wt Factor (Unitless)	f _y (MPa)	f _{ys} (MPa)				
22360.68	20	1	500	500				

Design Code Parameters

¥c	¥s
1.5	1.15

Flexural Reinforcement for Major Axis Moment, Mu3

	End-I Rebar Area mm²	End-I Rebar %	Middle Rebar Area mm²	Middle Rebar %	End-J Rebar Area mm²	End-J Rebar %
Top (+2 Axis)	1460	1.06	365	0.26	1184	0.86
Bot (-2 Axis)	730	0.53	490	0.35	365	0.26

Flexural Design Moment, Mu3

	End-I Design M _u kN-m	End-I Station Loc mm	Middle Design M _u kN-m	Middle Station Loc mm	End-J Design M _u kN-m	End-J Station Loc mm
Top (+2 Axis)	-287.0153	0	0	4385.3	-229.3106	5791.5
Combo	DWal29		DWal32		DWal29	
Bot (-2 Axis)	0	0	103.4389	2979.1	21.4145	5908.8
Combo	DWal32		DWal32		DWal32	

Shear Reinf	orcement for Maje	or Shear, V _{u2}

End-I	Middle	End-J
Rebar A _{sv} /s mm²/m	Rebar A _{sv} /s mm²/m	Rebar A _{sv} /s mm²/m
1085.26	629.94	816.81

Design Shear Force for Major Shear, $V_{\rm u2}$

End-I	End-I	Middle	Middle	End-J	End-J
Design V _u	Station Loc	Design V _u	Station Loc	Design V _u	Station Loc
kN	mm	kN	mm	kN	mm
235.8997	368.1	144.932	4385.3	183.5886	5791.5

End-l	End-I	Middle	Middle	End-J	End-J
Design V _u	Station Loc	Design V _u	Station Loc	Design V _u	Station Loc
kN	mm	kN	mm	kN	mm
DWal29		DWal28		DWal29	

Torsion Reinforcement

Shear Rebar A_{svt} /s mm²/m 887.84

Design Torsion Force					
Design T _u kN-m	Station Loc mm	Design T _u kN-m	Station Loc mm		
3.2938	368.1	17.9314	5908.8		
DWal29		DWal2			

PROJECT DATA SHEET

UNIT NO._____

DESIGNS (R & B), GANDHINAGAR

Sr. No.	Description				
1.	Name of Project Jewel Residency (Block B)				
2.	Project file No. (To be filled by Design Circle).				
	Project Team	EE	DEE	AE	
3.	(To be filled by Design Circle).				
4.		Projec	t Referred By:		
	~	Name of Office	Contact Person	Telephone Nos.	
(a)	Circle				
(b)	Division				
(c)	Sub-Division	•			
5.	Consultants of the	project:	A 1 •/ /		
(a)	Nature of C	consultancy	Architect	Structural Consultant	
(b)	Nature of	the firm	Pandya Associates	Setu Infrastructure	
(c)	Add	ress	Architects and Engineers, 64, sharda Nagar, Paldi, Ahmedabad – 380007	308, Abhishilp Complex, B/h. Puja Party Plot, Judges Bungalow Road, off. 132 ft. Ring Road, Vastrapur, Ahmedabad - 380015.	
(d)	Authorized R	epresentative			
(e)	Telephone,]	Fax, E-mail	079 26633666	07940037661/26751800 Email: <u>setuinf@gmail.com</u>	
6. (a)	Nature of Project		New Construction -Residential		
7. (a)	Work order office letter outward No. with date		01 August 2015		
(b)	Stipulated date of per agreement	starting work as	01 September 201	5	
(c)	Stipulated date of work as per agree	completion of ment.	29 February 2016	i	

8.	Details of Building	
(a)	Туре	Load Frame
	¹ As per AMC Submission Plan*	
(b) i	Total floor area in m ² including	23446.24 m^2
	Basement Built up Area	
ii	As per Structural Design**	24010.87 m^2
	Total floor area in m ² including	(Additional 564.63 Sq. Mt Built up added for 20th Floor)
	Basement Built up Area	
		$\{[3^{rd} B + 2^{nd} B + 1^{st} B] +$
		[Plinth + GF + FF] +
		[2 to 15 floor] +
		$\pm [SC \pm IMR \pm OHWT \pm Air Antenna]$
		+ [SC + LWR + OTW T + All Antenna] - Total Height
	Total height from Basement to Ton	
(c) i	in $m^2 A_0$ non AMC Dion*	$\int [4.650 \text{ mt} + 3.45 \text{ mt} + 4.05 \text{ mt}] +$
	III III AS PET AIVIC Plan [*]	$\{[4.050 \text{ m} + 3.45 \text{ m} + 4.05 \text{ m}] + [0.45 \text{ m} + 4.50 \text{ m} + 3.45 \text{ m}] +] \}$
		$[44 \ 10 \text{ mt} (3.15 \text{ mt} \times 14 \text{ floor})] +$
		[13.80 mt (3.45 mt x 4 floor]
		$+[8.42 \text{ mt}]\}$
		= 86.87mt
		$\{[3^{ra} B + 2^{na} B + 1^{st} B] +$
		$\begin{bmatrix} Plinth + GF + FF \end{bmatrix} +$
		$[2^{-m} \text{ to } 16^{m} \text{ floor}] +$
		$\begin{bmatrix} 17 & to 20 & 1000 \end{bmatrix}$ + $\begin{bmatrix} SC + I MR + OHWT + Air Antenna \end{bmatrix}$
		= Total Height
	Total height from Basement to Top	
11	in m As per structural Design**	$\{[4.650 \text{ mt} + 3.45 \text{ mt} + 4.05 \text{ mt}] +$
		[0.45 mt +4.50 mt +3.45 mt]+
		[47.25 mt (3.15 mt x 15 floor)] +
		[13.80 mt (3.45 mt x 4 floor] +
		[8.42 mt]}
		= 90.02
		[Plinth + GF + FF] +
		$[2^{nd} \text{ to } 15^{th} \text{ floor}] +$
	Total height from GL in m As per AMC Plan*	$[16^{\text{un}} \text{ to } 19^{\text{un}} \text{ floor}] +$
		+ [SC + LMR + OHWT + Air Antenna]
		= 10ta1 Height
iii		[0.43 mt + 4.30 mt + 5.43 mt] + [44 10 mt (2.15 mt m 14.800m)] \pm
		[13.80 mt (3.45 mt x.44 floor]
		$+[8.42 \text{ mt}]\}$
		= 74.72 mt

^{*}As per AMC Submission plan there is 3B+G+19 stories building.

^{**} As consideration of future expansion & with consideration to Use of Extra chargeable FSI & or TDR bases development plan we have structurally design this building for 3B+G+20 stories

		[Plinth + GF + FF] +			
		$[2^{n\alpha} \text{ to } 16^{nn} \text{ floor}] +$			
		$[1/^{th} \text{ to } 20^{th} \text{ floor}] +$			
	Total height from GL in m	- Total Height			
iv.	As ner structural Design** ³	[0.45 mt + 4.50 mt + 3.45 mt] +			
	As per structural Design	[47.25 mt (3.15 mt x 15 floor)] +			
		[13.80 mt (3.45 mt x 4 floor]+			
		[8.42 mt]}			
		= 77.87m			
(d)	No. of stories ; As per AMC Plan*	3B+G+19			
	As per Structural Design **	3B+G+20			
(e)	Base dimension bx in m	38			
(f)	Base dimension bz in m	21.4			
9.	Exposure condition:				
(a)	Туре	Moderates			
(b)	Minimum Grade of RCC	M20			
(c)	Minimum Grade of PCC	M15			
10.	Fire Resistance Rating in Hours.				
(a)	Building height Up to 15 m.	1 Hour			
(b)	Building height more than 15 m.2 Hour				
11	Nominal Cover (Clear cover) in mm (To main reinforcement considering				
11,	exposure condition & fire resistance				
(a)	Footing	50			
(b)	Column	40			
(c)	Beam below Ground level	20			
(d)	Beam above Ground level	30			
(e)	Slab	25			
12.	Dead Loads:				
(a)	Earth	18.00 KN/m^3			
(b)	Water 10.00 KN/m ³				
	Brick masonry with plaster/	finish on both faces			
(c)	115 Thk.	2.90 KN/m^3			
(d)	230 mm Thk.	5.30 KN/m^3			
(e)	350 mm Thk.	7.70 KN/m^3			
(f)	PCC	24.0 KN/m^3			
(g)	RCC	25.0 KN/m^3			
13.	Imposed loads (As per IS:875-1987)				
(a)	Occupancy	Imposed load (in KN/m ²)			
	Basement Parking Area	3 KN/m ²			
	Shops Area	3 KN/m ²			
	Typical Storey	2 KN/m^2			
	Staircase + Foyer	3 KN/m^2			
	Roof load:-	1 5 1001 2			
(b)	Accessible	1.5 KN/m ²			

³ *As per AMC Submission plan there is 3B+G+19 stories building.

^{**} As consideration of future expansion & with consideration to Use of Extra chargeable FSI & or TDR bases development plan we have structurally design this building for 3B+G+20 stories

	Roof load:-	
(c)	Not accessible	KN/m^2
	Slope Angle.	
(d)	Water Tank:	
	(i) Type	PVC/RCC
	(ii) Capacity in Liters	25000 Liters
	(iii) Height in m	4048.76mm
	(iv) Diameter in m	2999.74mm
	(v) Nos. & position	2 tanks
14.	Earthquake Load Date:	
(a)	Earthquake Zone	III
(b)	Zone Factor 'Z'	0.16
(c)	Importance Factor 'I'	1.0
(d)	Response Reduction Factor 'R'	5
(0)	Natural Period:	1.64
(6)	Tx (Sec.)	1.04
(f)	Natural Period:	1 23
(1)	Ty (Sec.)	1.25
(g)	Live Load Reduction Factor	0.25,0.5
(h)	Docility detailing as per IS:13920-	Vas
(11)	1993	165
15	Soil Data:	
(a)	Soil Report No. & Date	ST/14/09/6663
(b)	Depth of foundation below GL	12 m
(c)	SBC	31 T / m ²
(d)	Type of soil	Medium
(e)	N-value	60

CERTIFICATE

It is hereby certified that the building Structure of Project Jewel Residency has been designed for following:

(A) Latest revision/amendments of following IS Codes considered in the design:

(1)	IS:456-2000	 Yes
(2)	IS:1893-2002	 Yes
(3)	IS:13920-1993	 Yes
(4)	IS:4326-1993	 No
(5)	IS:875-1987	 Yes

- (B) SBC, N-Value and foundation depth are taken as per the Soil Report No. ST/14/09/6663 Dt. Sept.
 2014 prepared by K.C.T. Consultancy Services.
- (C) The design is based on the sound engineering practice and undersigned are solely responsible for the correctness of design and soundness, durability & strength of the structure.

Contractor	Consultant	signed in my presence (Executive Engineer) Div
Name:	Name:	Name:
Sign:	Sign:	Sign: